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Abstract
Abstract

In our short duration research project, our team worked upon a target of understanding
& using the theoretical model of the gravitational effects due to the presence of a satellite
in the exo-planetary system using variations in the transit signals (TTV and TDV) of the
target exoplanet, developed back in 2009. Using the model, we derived the expressions for
the instantaneous variations of the signals and used them to confirm theoretically that the
phase difference between the above mentioned signals for the possible exomoon candidates
should be π

2 . Further, we used this criteria along with some other parametric constraints
like SNR value and the standard deviation to short-list the candidates to check for the fur-
ther possibility of the presence of an exomoon. Working with 2016 data set shows that
only 1.9% of the candidates have the quoted phase difference, we’ve tried to draw some
theoretical conclusions which can be used to further analyse the reason behind the discrep-
ancy between the prediction and the data-analysis. We’re also eagerly waiting to try the
data-analysis process with the latest dataset to gain better insights in the outcome.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background & Literature Overview 3
2.1 Detection of Exo-moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Exo-moon vs. Additional Planet Hypothesis . . . . . . . . . . . . . 4

2.2 Phase difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Theoretical prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Data outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Transit timing variation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Transit duration variation . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Methodology 9
3.1 Theoretical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Instantaneous variations . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Diagrammatic role of parameters . . . . . . . . . . . . . . . . . . . . 12

3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Systems shortlisting . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Plot fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Results 17
4.1 Theoretical Parameters Modelling . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Data Analysis of Exoplanetary Systems . . . . . . . . . . . . . . . . . . . . 17

5 Discussion & Conclusions 26
5.1 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



Contents vii

5.2 Observational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Future Work 29
6.1 Modifications of theoretical constants . . . . . . . . . . . . . . . . . . . . . 29
6.2 Modelling using Convoluted Neural Networks . . . . . . . . . . . . . . . . 30
6.3 Wider dataset analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Testing exomoon hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendix A Derivation of generalized instantaneous variations 33

Appendix B MATLAB code for plotting derived instantaneous variations 37

Appendix C Python Code for Data Analysis 41

References 46



List of Figures

2.1 True Anomaly of the planet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Reference diagram for our derivation - from Kipping (2008) . . . . . . . . . . 11
3.2 Reference diagrams for impact parameter - from paulanthonywilson.com . . 12
3.3 Earth-moon system - TTV, TDV and Phase plot . . . . . . . . . . . . . . . . . . 13
3.4 Υ−1 dependency on ω̄P for different eP - from Kipping (2008) . . . . . . . . . . 14

4.8 (a)Fitted TTV signals (Y) against Transit number (X) (orange) and data points
along with errorbars (blue) (b)Fitted TDV signals (Y) against Transit number
(X) (orange) and data points along with errorbars (blue) . . . . . . . . . . . . . 24

4.9 Variation of Phase Difference between TTV and TDV over Transit Number . . 25

6.1 Exaggerated evolution of TTV/TDV (blue line) over long transit epoch interval 29

viii

https://www.paulanthonywilson.com/exoplanets/exoplanet-detection-techniques/the-exoplanet-transit-method/


List of Tables

3.1 Shortlisted Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 KOIs showing a phase difference of π
2 within a 30% agreement . . . . . . . . . 28

ix



1
Introduction

1.1 | Motivation
Ever since humanity has looked up into the night sky, we have wondered , are we alone in this
universe? Or is there life beyond Earth? This question has bothered us since ages. It is the
first time in human history, that now we have the technological means to find the answer of
this question. Out of many approaches one is to find another Earth like planet; a planet with
just the right temperature, density, atmospheric compositions and albedo which makes planet
potentially habitable.

Since decades, scientists and researchers across the globe have many missions carried out, like
Hubble, Spitzer, TESS and mainly Kepler mission for Detection of Exoplanets. There are many
upcoming missions lined up for next decade which will give us insights into the details about
the exoplanets.

NASA’s Kepler telescope was launched in the year of 2009 with an aim to facilitate the search
for possible earth-like planets and since then the research has moved to a higher accelerated
scale. All missions till date have taken the mark of confirmed exoplanets to more than 4000.

Apart from exoplanets there exists another possibility to find habitable conditions—Exomoons.
Along with the fact that moon increases the habitability of planet , moons themselves can be
habitable. For Example, the moon Europa has more ambient conditions than that of Jupiter.

Many inquisitive minds on this planet have contributed to the research on Exomoons. After
the release of Kepler data, Exomoon research has gone up the hill. For this project, we tilt our
curiosity towards Exomoons, its detection and theoretical model.

1.2 | Aims and Objectives
Till date there has been no concrete evidence for the existence of Exomoon candidates. There
are multiple ways to look for them: the major one being photometric observations but they

1



Chapter 1. Introduction 1.2. Aims and Objectives

produce extremely faint signal making it invisible to detectors. So we turn towards the signal
produce by gravitational effects of Exomoon on Exoplanets.

The observations are mostly made via the NASA’s Kepler space telescope, which was designed
to detect a photometric signal corresponding to a transit depth of 85 ppm—equal to the Earth-
Sun analog. Here, we target on possible Exomoons which are not detectable directly, but by
these indirect signals.

The signals that we have focused on are the Transit Timing Variations and the Transit Duration
variations. Our aim is to provide a better version of the theoretical model and sinusoidal fitting
of TTV and TDV signals that can set well together, explaining the discrepancies which will be
discussed in following sections 2.2.

2



2
Background & Literature Overview

2.1 | Detection of Exo-moon
Given the large number of moons we have in our solar system, extrasolar moons are highly
believed to exist. In pursuit of detecting them, many methods can be used like transit method
Nesvornỳ et al. (2012), direct imaging method Peters and Turner (2013), and Gravitational mi-
crolensing method Ranc et al. (2019). No search to date has made a confirmed identification
of an exomoon. With existing data from previous missions like Kepler Space Telescope, Exo-
moons candidates can be found by analyzing transits, specifically TTVs and TDVs. It is im-
portant to note that these satellites make a small impact in already faint signals of Exoplanets,
which makes them even harder to detect Kipping (2009)

2.1.1 | Detection methods
The detection of Exo-moons depends on its size and photometric threshold of the telescope. If
the Exo-moons are large enough, they can be detected by their own transit signals itself. There
have been previous search missions for exo-moons in the Kepler data. The most sophisticated
one is the HEK (Hunt for Exo-moons with Kepler), Nesvornỳ et al. (2012) project, which uses a
photodynamical approach to examine the signals of exo-planets closely.

On the other hand, if an exoplanet has a small moon around it, it will produce some perturba-
tions in the orbit of its exoplanet which we can interpret from the data collected by telescopes.
These perturbations can come in different forms, like Transit Timing Variations (TTV) and Tran-
sit Duration Variations (TDV), and Transit Photometric Variations (TPV).

Here, we explore the possibility of existence of exo-moons which are small enough to not pro-
duce their own Transit signal. These exo-moons are too small to create detectable photometric
(transit) signals of their own but are large enough to create TTVs in their host planet’s transit
signal by displacing them with respect to their mutual center of mass Fox and Wiegert (2020)

3



Chapter 2. Background & Literature Overview 2.2. Phase difference

2.1.2 | Exo-moon vs. Additional Planet Hypothesis
TTV Signals produced by Exo-moons (if present) are exactly reproducible by the additional
non-transiting planet. To better understand the TTVs and TDVs in our data, we use Bayesian
inference, where chi-square fitting helps to determine if the signal better fits the Exomoon hy-
pothesis or Additional Planet.

2.2 | Phase difference

2.2.1 | Theoretical prediction
Transit Timing Variation signal produces a degeneracy in the measurement of the mass of the
satellite and the orbital separation of the satellite, in the regard that one cannot be calculated
without assuming the other. To solve this, a complementary method, using Transit Duration
Variation signals was introduced. The TTV and the TDV waveforms are sinusoidal, with the
TDV lagging behind the TTV by a phase difference of π

2 . This arises from the fact that TTV is a
spatial effect and TDV is a velocity effect.

If one assumes zero orbital eccentricity of the satellite orbit and that the orbital plane of the planet-moon
and the planet-star system is the same as the plane of reference then the TTV signal is a relation between
the projected distance between the planet and the planet-moon barycentre, and the component of the or-
bital velocity of this barycentre around the star in the same direction.

This projected distance, and consequently the TTV, is a function of the true anomaly of the
planet around the planet-moon barycentre. The true anomaly is an angular parameter that
defines the position of a body moving along a Keplerian orbit and varies from 0 to 2π. This
relation is modified to include the effects of an eccentric orbit of the satellite and planet, and
longitude of the pericentre—defined as the longitude of the point of closest approach to the
planet, considering zero inclination of the orbit of satellite—of the satellite and planet.

Transit Duration Variation(TDV) is the change in the Transit Duration of the planet that is ob-
served over multiple measurements. This duration of transit is inversely proportional to the pro-
jected velocity of the planet on the star, hence making TDV a velocity derived effect. The TTV and
TDV waveforms have been plotted for the GJ436b system, assuming a hypothetical 1Mearth ex-
omoon, which indicates a π

2 phase difference. Kipping (2008)

In Heller, René et al. (2016), the TTV-TDV diagrams of an exoplanet-exomoon system are plot-
ted. The TTV-TDV diagram for an exoplanetary system with one satellite and non zero eccen-
tricity is described as an egg-shaped ellipsoid, wherein the orientation of the ellipse depends
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Figure 2.1: True Anomaly of the planet

on the value of the argument of the perihelion. The elliptical shape is derived from the fact that
the amplitudes of the two signals differ significantly.

Experimentally, Fox and Wiegert (2020) shortlisted eight systems for testing their chi-square
fitting for two hypotheses, an additional planet system, and an exomoon system, in accordance
with a parameter space and found that for these systems, the TTV and TDV waveforms did
not exhibit a shift in phase difference. This might be attributed to the high error limit and the
limited amount of data points.

5
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2.2.2 | Data outcome
For the data sources of exo-planetary systems our first go to was the NASA Kepler Exoplanet
Archive. However, we started off with analysing the data-sets mentioned in the Holczer et al.
(2016). The data-sets were dated 03/2015 and 09/2016. In order to get recent data-sets we
did further digging in Vizier and Simbad sections of Exo-planetary archives. The recent data-
sets had a large number of candidates but did not have all the parameters such as TDV and
TDV error which was crucial for the analysis based upon these signals. Even after weeks of
searching we could not find recent data-sets with TDV signals. Therefore we moved on with
the data analysis of the 2016 data.

After looking at Fox and Weigert’s paper we concluded that they could not have found any
candidates with a phase difference of π

2 because they could have eliminated certain candidates
via the transit depth being less than 85 ppm condition. That also significantly lowers the SNR
because of which number of reliable candidates got lowered further. We wanted to confirm
Kipping’s theory and therefore eliminated this transit depth condition which also gave us sig-
nificantly higher SNR values.

2.3 | Mathematical Description
In this section, let’s have a closer look at the mathematical description of the theoretical model
developed by David Kipping which have been subesquently followed by exoplanet researchers
in the possible search of exomoons.

2.3.1 | Transit timing variation
As we learnt from studying Kipping’s model, the RMS value of the TTV amplitude is for the
case of circular orbit of satellite is

δTTV =
aw√
2vB⊥

(2.1)

where aw is the radius of satellite around the barycentre of the planet and satellite system
and the vB⊥ is the velocity of barycentre around the star. Kipping (2009)

This value has been modified to include the eccentricity of the satellite’s orbit es, position of
pericentre of satellite ωs and the corresponding quantities for the planet’s orbit around the star
ep and ωp.The modified version can be expressed as a function of above-mentioned parameters

6
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in the following way.Kipping (2009)

δTTV =
1√
2
√

apasGM
ζT(esωs)

γ(ep, ωp)
(2.2)

In the above expression, apart from the ζ(esωs) and γ(ep, ωp) factors, all the factors are

taken to be constants including GM which is defined as GM =
Mp M−1

PRV√
g(Mstar+M−1PRV)

. Depending

upon the ratio of periods of both the orbit of satellite and the planet, the values of ap or as will
change over a transit but here their RMS values have been taken as constants. The expression
also signifies that the signal is proportional to the product of Ms and Ms.

δTTV ∝ Msas (2.3)

2.3.2 | Transit duration variation
Now, let’s examine the expression of TDV signal as derived in the theoretical mode. The basic
definition of this TDV starts from the expression tT = X

vP⊥
, basically the time duration is the

ratio of the transit distance covered by the planet and it’s velocity vP⊥ = vB⊥ + vw⊥ which is
the velocity of the barycenter of the planet-moon system and the velocity of the planet around
the barycentre.

Similar to TTV signals, this expression, when modified to encompass the eccentricity and the
position of pericentres of the satellite, the rms expression becomes

δTDV =

√
ap

as
G
′
M

tT√
2

ζD(esωs)

γ(ep, ωp)
(2.4)

where G
′
M stands for a constant factor of G

′
M = M2

s√
Mprv(Mprv+Mstar)

. The above expression implies

that

δTDV ∝ Msa
−1
2

s (2.5)

Now, these two signals can be used in order to figure out the mass and distance of satellite of
the possible exomoon candidate.

It must be noted from the above formulas that the phase difference between the signals of
TTV and TDV will only be generated due to the functions ζ(esωs) and γ(ep, ωp). The fact that

7
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these signals are at a phase difference of π
2 becomes a significant tool for short-listing candidates

and checking their possibility.
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3
Methodology

3.1 | Theoretical modelling
The aim of modifying the theoretically modeled transit timing and duration variations is to
analyse the possible theoretical sources that give rise to the discrepancy down to have mainly
three possible explanations:

� Theoretical assumptions which hinder theoretical accuracy
There are constants in Kipping (2008) and our mathematical model (3.1, 3.4), denoted by
CT and CD, can change considerably if given a long enough epoch. This can complicate
mathematical modelling by a significant amount so considering the time constraint of
the project, we will be taken them as constants, while mentioning the possibility of their
modification in future scopes section.

� Sensitive parameters not taken into account for theoretical modelling
There is always a possibility of sensitive and unnoticed parameters when we talk about
far-away systems such as exoplanets. We will be analyzing each non-intrinsic parameter
in order to see what role they play in varying transit timing variations and transit dura-
tion variations. If we do not see a parameter that can cause a change of phase difference
from π

2 , it would indicate the existence of an additional parameter/s.

� Change of reference epoch to match limitations for data analysis
This will be the main focus of theoretical modelling for this report. Change of reference
indicates not one but two modifications to previously known theoretical models. Let us
discuss the two in brief below.

Epoch unit

The previous models use transit number as their discrete epoch unit as it is only at certain time
intervals that we are able to notice the exoplanet transit in front of its host star. This is what we
mean by limitations for data analysis. It is favorable that we have a continuous epoch rather
than a discrete one so as to really be able to map the change in TTV and TDV over the epoch.

9



Chapter 3. Methodology 3.1. Theoretical modelling

The true anomaly of the wobble orbit is what causes the phase of TTV and TDV to shift (equally,
therefore phase difference is maintained). It also describes the orientation of the exoplanet with
respect to the planet-moon barycenter (our reference for the C component of O− C). This suits
our conditions for epoch unit very well as it is related to the physical orientation of exoplanet
and is also the main factor in changing the phase of transit variations.

Equations of variations

The previous models use RMS equations of variations given by

δTTV =

√
1

2π

∫ 2π

0
[TTV( fW)]2d fW δTDV =

√
1

2π

∫ 2π

0
[TDV( fW)]2d fW

The integration of the square of TTV( fW) and TDV( fW) are non-trivial and require certain as-
sumptions to be taken in order to get an approximate RMS value as done by Kipping (2008) and
Kipping (2009). The above expressions also assume one wobble orbit in the transit duration as
the integration is being done form 0→ 2π.

To overcome these assumptions we must derive a set of variation equations that do not require
such assumptions and yet compliment the epoch unit as discussed above. In 3.1.1, we will
derive our modified instantaneous variation equations which are a function of our selected
epoch, true anomaly of exoplanet on wobble orbit.

3.1.1 | Instantaneous variations
The most generalized theoretical model of potentially exomoon-induced transit timing varia-
tions and transit duration variations up-to-date comes from Kipping (2008) and Kipping (2009).
In order to analyze theoretically, the source of the aforementioned discrepancy in phase differ-
ence for the six exomoon candidates considered in Fox and Wiegert (2020), we must first find
an absolute epoch with respect to the planet-moon barycentre as variations are expected to oc-
cur from the model of an exoplanet without an exomoon.

As the TTV and TDV phase is the main focus of our project, we have taken true anomaly, the
orientation phase of the exoplanet w.r.t. planet-moon barycenter as the to be the absolute epoch
for the theoretical model. Unlike the model used by Kipping (2020) and Fox and Wiegert (2020),
we do not use the RMS value of TTV and TDV to check for phase as integrating the square of
instantaneous variation equations we obtain in appendix A is non-trivial without assumptions
that can hinder the theoretical accuracy.

10
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Figure 3.1: Reference diagram for our derivation - from Kipping (2008)

3.1.1.1 | Transit timing variations

The transit timing variation can be expressed as a function of true anomaly as follows

TTV( fW) =
CT

1

CT
2 + vW⊥

cos( fW + ω̄W)

1 + eWcos( fW)
(3.1)

where

CT
1 = aW(1− e2

W) CT
2 = vB⊥ = Υ (eP , ω̄P)

√
G (MPRV + M∗)

aP
(3.2)

Υ (eP , ω̄P) = cos
[

arctan
(
−ePcos (ω̄P)

1 + ePsin (ω̄P)

)]√
2 (1 + ePsin (ω̄P))(

1− e2
P
) − 1 (3.3)

where fW represents the true anomaly of the planet in wobble orbit and Mps = Mp + Ms.

The above expression gives the same result as that given by the expressions in Kipping (2008).
Hence for TTV, we obtain the same phase and magnitude in our modelling as predicted and
used in the paper.

3.1.1.2 | Transit duration variations

The transit duration variation can be expressed as a function of true anomaly as follows

TDV( fW) = CD
(

lr
1 + vr⊥

− 1
)

(3.4)

11



Chapter 3. Methodology 3.1. Theoretical modelling

where

CD =
lB

vB⊥
=

√
(R∗ + RP)2 − (bR∗)2

vB⊥
(3.5)

lr =
lW
lB

=

(
(R∗ + RP)

2 − (bR∗)2(1 + 1
rP
)2

(R∗ + RP)2 − (bR∗)2

) 1
2

(3.6)

vr⊥ =
vW⊥
vB⊥

(3.7)

where b represents the impact parameter as shown in 3.2.

Figure 3.2: Reference diagrams for impact parameter - from paulanthonywilson.com

The above expression deviates from the formula derived by Kipping (2009). Here, we have
not taken transit duration as a parameter as it cannot be considered as a replacement for transit
duration of a planet transmitting without an exomoon. So instead, we have replaced it with a
theoretical expression for the transit duration of planet lacking moon.

Note that the phase of our TDV does not deviate from Kipping (2009)’s TDV expression, hence
our theoretical model too predicts a phase difference of π

2 . The change in magnitude can play a
key role in RMS expressions for sinusoidal functions, hence further effecting the plots for TDV.

3.1.2 | Diagrammatic role of parameters

We will set a nomenclature for TDV graphs as we are obtaining a symmetric two point
graphs which must be resolved into one per domain using theoretical understanding.

1. TDV plots: Separated by node, described by first letter of color, left to right

2. Phase plots: Separated by quadrant, described by first letter of color, chronological

12
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Chapter 3. Methodology 3.1. Theoretical modelling

Let us look at our reference/starting diagram 3.3 and explain the nomenclature using that.

Figure 3.3: [Left: TTV plot] ; [Center: OB TDV plot] ; [Right: O2O1B4B3 Phase plot]

To be able to interpret different data plots and find a possible phase shift causing sensitive
parameter, we must first identify the role of reach parameter diagrammatically. In this section
we will individually look at the diagrammatic role of non-intrinsic parameters such as the
following. The first three plots for each parameter represent a low value taken for it, the next
three represent higher, both relative to the reference plot 3.3.

3.1.2.1 | Parameter 1: Barycenter eccentricity (eP) - (4.1)

Result 1: The amplitude of TTV and TDV are directly proportional to en
P.

Result 2: The phase of TTV and TDV are independent of en
P.

3.1.2.2 | Parameter 2 and 3: Wobble eccentricity (eW = eS) - (4.2)

Result 1: The amplitude of TTV and TDV are directly proportional to en
W and en

S.
Result 2: The phase of TTV and TDV are independent of en

W and en
S.

Result 3: The rate of change of TTV changes with en
W and en

S.

3.1.2.3 | Parameter 4: Barycentre semi-major axis (aP) - (4.3)

Result 1: The amplitude of TTV and TDV are directly proportional to an
P.

Result 2: The phase of TTV and TDV are independent of an
P.

3.1.2.4 | Parameter 5 and 6: Wobble semi-major axis (aS ∝ aW ) - (4.4)

Result 1: The amplitude of TTV is directly and TDV is inversely proportional to an
S and an

W .
Result 2: The phase of TTV and TDV are independent of an

S and an
W .

Result 3: The proportionality varifies the relations: TTV ∝ MsaS and TDV ∝ Msa−
1
2

S .

13
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3.1.2.5 | Parameter 7: Position of barycenter pericenter (ω̄P) - (3.4)

Dealing with proportionality of angles can be tricky as for their often symmetric nature. To
represent the effect of ω̄P we refer to Kipping (2008) so as to see the change in value of Υ−1, the
function that absorbs barycenter orbit properties, w.r.t. ω̄P. Higher its value, higher the value
for both TTV and TDV.

Figure 3.4: Υ−1 dependency on ω̄P for different eP - from Kipping (2008)

3.1.2.6 | Parameter 8: Position of wobble pericenter (ω̄S) - (4.5, 4.6)

Result 1: The amplitude of TTV is independent of ω̄S.
Result 2: The amplitude of TDV is altered per π cycle due to ω̄S.
Result 3: The phase of TTV and TDV is shifted equally by ω̄S, maintaining phase difference.

3.1.2.7 | Parameter 9 : Impact parameter (b) - (4.7)

Result 1: The amplitude of TTV is independent of b.
Result 2: The amplitude of TTV is inversely proportional to bn.
Result 3: The phase of TTV and TDV are independent of b.

3.1.2.8 | Parameter 10 : True anomaly ( fW )

The true anomaly is the argument against which we plot TTV and TDV in our theoretical
model. Hence it is trivial that
Result 1: The amplitude of TTV are independent of fW .
Result 2: The phase of TTV and TDV is shifted equally by ω̄S, maintaining phase difference.

14
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3.2 | Data analysis
The data analysis done in Fox and Wiegert (2020) was very detailed and therefore we consid-
ered to work with that as our basis. Going by our objective, we would have modified the code
a bit after having reconfirmed the results in their paper, to shortlist candidates with a π

2 phase
difference. Since Kipping (2008) already suggests that TTV and TDV signals must have a phase
difference of π

2 for exomoon systems. This would help us not only detect probable exomoon
candidates but also inspect the fact as to why Fox and Weigert did not find the required phase
difference.

3.2.1 | Systems shortlisting
For shortlisting candidates we went forward with the conditions mentioned in Fox and Wiegert’s
paper:

� Imposing a cut-off of standard deviation less than 40 minutes for the fitted TTV signals.

� Transit depth of 85 ppm or less.

� Finally selecting the ones with the best SNR values greater than 1.0

Using these points we reconfirmed the results as reported in paper. We got similar results as
were reported in the paper. Next, we tried to add a condition which checks how many systems
do show a phase difference of π

2 .

We expected to see a majority of candidates with the required phase difference (excluding
the SNR condition) as Kipping’s theory doesn’t assume anything else which could have been
eliminated in our shortlisting conditions and therefore most of them (if exomoons) should be
showing such a phase difference.

Next, we shortlisted candidates with just a phase difference of π
2 and SNR value greater

than 1.0 since we did not want to look at systems with noise greater than signal. Even then
we did not get a considerable number of candidates. We decided to look at candidates which
showed a standard deviation of less than 40 minutes and showed π

2 phase difference with a
tolerance of 0.1. Using these conditions we got 12 candidates 3.1 with which we would be
using to find a common link as to why these are the ones which show the required phase
difference.

3.2.2 | Plot fitting
For fitting the TTV and TDV data points we went with the least χ-square fit i.e., global min-
imisation. We used the SciPy curve f it function module to fit the data points using a general

15
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KepId Kepoi Name Kepler Name Phase Difference SNR
10187017 K00082.01 Kepler-102 e -1.4825 2.38507
4914423 K00108.01 Kepler-103 b 1.5966 2.15896
8359498 K00127.01 Kepler-77 b 1.6313 3.2644
8644288 K00137.01 Kepler-18 c 1.5974 2.64098
5735762 K00148.02 Kepler-48 c -1.57637 2.25042
2987027 K00197.01 Kepler-489 b -1.52618 2.940218
9390653 K00249.01 Kepler-504 A b 1.6505 2.04999
8292840 K00260.02 Kepler-126 d -1.65055 1.9133
5792202 K00841.02 Kepler-27 c -1.505414 2.06893
10272640 K01074.01 Kepler-762 b 1.54297 2.003461
10864656 K01299.01 Kepler-432 b 1.6275 2.0652
12257999 K02577.01 1.63013 1.521138

Table 3.1: Shortlisted Candidates

function of the form A sin(Bx + C). We fit the TTV and TDV datapoints against the transit
number. And calculate the difference in the value of C for both the fits to give the phase differ-
ence. Regarding the number data points we started out with just 5 and then increased it to 10 in
order to minimise random noise. If the number of data points were to be higher than that then
because of lack of observations some candidates get eliminated. In order to make sure the least
χ-square fit was working properly we first matched the results with that in Fox and Weigert’s
paper. We got the same results for the KOI mentioned in their paper.

The module was providing certain erroneous results when the dataset provided had a shifted
mean in different sections then the module failed to fit it properly because of an optimization
error. For this we started considering more number of data points (as mentioned before). Next,
we also started facing error with some datasets that could not be properly fitted using the
default settings of the module such that maximum number of calls to the function being 800.
This was changed to 5000 to get the best fit (most converged) result.

16



4
Results

4.1 | Theoretical Parameters Modelling
The results for checking the role of non-instrinsic parameters in TTV, TDV and phase plots are
given below and hyperlinked by their title in the previous section.

4.2 | Data Analysis of Exoplanetary Systems
From our shortlisted candidates we fit the TTV and TDV signals upto 10 data points and their
results are presented below. 4.8

The fitting in all of these cases seem reasonable as when other methods are used like fitting
using higher order polynomials, different algebraic and geometric iterative methods as well,
give fairly similar results. Since the fitted curves have different frequencies for TTV and TDV
the phase keeps on changing, looking at the magnitude of this change and the speed would
give us some information regarding the parameters in the theoretical model that controls it. 4.9

In order to look at a constant phase difference we tried to fit the observations of TTV using the
least χ2 method and use the frequency of that plot to fit TDV but that would be a biased fitting
which would lead to wrong results. We also tried to do a high frequency fitting as the TTV
would vary between transits, and going from the theory of the ratio Ps

Pp
the frequency should

be greater than 9. Therefore we tried to fit using the function A sin{(|B| + 9)x + C}. While
this does lead to a lesser variation in the phase difference but it also brings up newer candi-
dates. The best fitting function would be to use a composite form of the formulas provided by
Kipping’s theory but that wouldn’t be for confirming his theory since we aren’t considering
any formula independent of his theory, it would just be helpful to find out exomoons given his
theory works out fine.

There are a lot of other factors in the curve fitting that can be explored and have been mentioned
in the future scope.
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[1st row: Low value for eP] [2nd row: High value for eP]

Figure 4.1: [Left: TTV plot] ; [Center: OB TDV plot] ; [Right: O2O1B4B3 Phase plot]

[1st row: Low value for eS] [2nd row: High value for eS]

Figure 4.2: [Left: TTV plot] ; [Center: OB TDV plot] ; [Right: O2O1B4B3 Phase plot]
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Chapter 4. Results 4.2. Data Analysis of Exoplanetary Systems

[1st row: Low value for aP] [2nd row: High value for aP]

Figure 4.3: [Left: TTV plot] ; [Center: OB TDV plot] ; [Right: O2O1B4B3 Phase plot]

[1st row: Low value for aS] [2nd row: High value for aS]

Figure 4.4: [Left: TTV plot] ; [Center: OB TDV plot] ; [Right: O2O1B4B3 Phase plot]
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Chapter 4. Results 4.2. Data Analysis of Exoplanetary Systems

[1st row: ω̄S = π
4 ] [2nd row: ω̄S = 3π

4 ]

Figure 4.5: [Left: TTV plot] ; [Center: BOB TDV plot] ; [Right: B4HO1LO2LB3HB4H Phase plot]

Figure 4.6: [Left: TTV plot] ; [Center: OBO TDV plot] ; [Right: O2HB3LB4LO1HO2H Phase plot]

[1st row: Low value for b] [2nd row: High value for b]

Figure 4.7: [Left: TTV plot] ; [Center: OB TDV plot] ; [Right: O2LB3HB4HO1L Phase plot]

20



Chapter 4. Results 4.2. Data Analysis of Exoplanetary Systems

(a) (b)

(c) (d)

(e) (f)
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(a) (b)

(c) (d)

(e) (f)
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Chapter 4. Results 4.2. Data Analysis of Exoplanetary Systems

(a) (b)

(c) (d)

(e) (f)
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Chapter 4. Results 4.2. Data Analysis of Exoplanetary Systems

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: (a)Fitted TTV signals (Y) against Transit number (X) (orange) and data points along
with errorbars (blue) (b)Fitted TDV signals (Y) against Transit number (X) (orange) and data
points along with errorbars (blue)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.9: Variation of Phase Difference between TTV and TDV over Transit Number
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5
Discussion & Conclusions

5.1 | Theoretical
There were mainly two theoretical modifications made in order to compensate for the limita-
tions that hinder data analysis (such as being able to observe the state of TTV and TDV only on
transit rather than having continuous observations so as to be able to measure the true changes
in TTV and TDV):

� Use of instantaneous variation equations rather than RMS variation so as to remove the
assumptions made for integration.

� True anomaly of exoplanet on its wobble orbit being the measure of epoch unit rather
than transit numbers which can be discrete.

These modifications show four merits over previously used theoretical methods:

� The method make sure the TTV and TDV have the same frequency so as to avoid change
of phase difference by assuming a common, shorter epoch - true anomaly of exoplanet on
its wobble orbit.

� On analysis, it gives out more candidates with a phase difference of π
2 than found using

previous methods of analysis.

� It gets us a step closer to removal of discrepancy between the theoretical model for
exomoon-induced TTV-TDV and data analysis methods.

� The period of exomoon orbit Ps is taken as a parameter, the factor of which can be ob-
tained after fitting the instantaneous variations on modified epoch.

5.2 | Observational
On having modified the shortlisting conditions used by Fox and Weigert we got 53 candidates
with an epoch of π

2 (excluding the standard deviation and SNR condition). The following table
provides the list of KOIs that showed an epoch of approximately π

2 . (Now the precision is to
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Chapter 5. Discussion & Conclusions 5.2. Observational

0.5 because the SD condition has been removed and we also need to account for the noise in
the low SNR candidates and that’s why the tolerance level has been increased) 5.1

All of these candidates can be looked into further as they do not vary significantly from Kip-
ping’s theory and might stand out to be probable exomoon candidates. Better curve fitting
methods maybe used to do the analysis other wise these can also be used as a part of the neural
network method explained in future scope.

The other conclusions based on just the data analysis are:

� Through the datasets till 2016 there were only 1.9% of the candidates which did show a
phase difference comparable to π

2 .

� Initially for the curve fitting module for less number of data points the graph had concen-
trated data points leading to a shifted mean and therefore the least χ2 method ended up
giving logically erroneous results or the module for curve fit in SciPy was not converg-
ing even when the maximum calls to the function was increased to 9000. Therefore there
must be a pattern in the variation of TTV which must be periodic (although the order of
variation maybe small but overtime accumulates).

� A high frequency plotting was also tried as described earlier while that did considerably
decrease the phase difference variation for our shortlisted candidates it also gave rise to
newer candidates. This could have been possible because of the fact that some candidates
start out with a phase difference not close to π

2 and then the high frequency plot actually
accounts for this change.

� In order to comment or confirm Kipping’s theory a more independent and rigorous curve
fitting analysis has to be undertaken. Using any sort of pre-defined functions to fit the
data points would be a bit biased and therefore using convoluted neural networks would
be the best way to go forward.

� The change in phase difference shown in the plots actually hint towards the fact that
the ωp and ωs variables which were assumed to be constant by Kipping’s theory aren’t
actually constant, they do vary somewhat. A better way to plot the theoretical models
would have been to just do a numerical integration and for that the form of the function
describing the previous 2 variables have to be known, which as of yet we do not.

In the end the fact stands that using any module with pre-defined curve fitting methods might
not work here as we do not want to bias our fitting. The plots of the TTV and TDV might give
better results with more results (as that might reduce the error because of random noise).
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Serial No. KOI Phase Difference
1 2.01 -2.0156
2 12.01 1.27826
3 20.01 1.42405
4 46.01 -2.0634
5 70.01 1.4444
6 82.01 -1.4825
7 82.02 -1.4335
8 103.01 1.5966
9 108.01 -1.4314

10 110.01 1.2680
11 111.01 1.14898
12 116.01 -1.9258
13 116.02 1.6313
14 127.01 1.9293
15 128.01 1.5973
16 137.01 1.13160
17 142.01 -1.5763
18 149.01 1.7468
19 152.02 1.4184
20 162.01 -1.0878
21 165.01 1.1309
22 197.01 -1.526
23 203.01 1.8189
24 227.01 1.8297
25 249.01 1.6505
26 252.01 -1.94436
27 254.01 2.0503
28 255.01 -1.1239
29 257.01 1.1589
30 260.02 -1.6505
31 275.01 -2.035
32 282.01 -1.373
33 288.02 1.7280
34 304.01 -1.419
35 306.01 -1.8629
36 314.02 -1.3976
37 315.01 1.2489
38 354.01 1.6941
39 398.01 1.94631
40 456.01 -1.1332
41 657.02 -1.3819
42 723.02 1.8721
43 841.02 -1.5054
44 921.02 -1.9889
45 984.01 -1.6896
46 1074.01 1.5429
47 1299.01 1.62746
48 1426.01 -1.26108
49 1573.01 -1.8433
50 1781.01 -1.25435
51 1805.01 2.03585
52 2577.01 1.630129
53 2672.02 -1.9235

Table 5.1: KOIs showing a phase difference of π
2 within a 30% agreement
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6
Future Work

Towards the ending of our project we realised that a lot more can be done and we have just
touched the tip of the iceberg. Given as follows are some verticals which can be worked upon
to give a better analysis and more reliable conclusions on the observations.

6.1 | Modifications of theoretical constants
For a long epoch interval, the parameters considered constant in both our and Kipping (2008)
can change considerably enough so as to play a role in changing the magnitude of TTV and
TDV. Parameters such as ω̄S, ω̄S, aP and aS can change slightly over the course of a single plan-
etary orbit. For a confirmed hypothesis, we need observations from multiple transits usually
in the order of 101. So it is pretty evident that in this order of transit numbers, the constants
mentioned above are bound to change by some amount. If not taken into account, they can
result in discrepancies between the theoretical models and data analysis. Figure 6.1 is an ex-
aggerated description of how the evolution of the aforementioned constants can have an effect
on the magnitude of TTV and TDV over long epoch interval.

Figure 6.1: Exaggerated evolution of TTV/TDV (blue line) over long transit epoch interval
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Such a function (figure 6.1) will require further mathematical modelling. Fourier transform
can be a promising method to find close-to analytical solution as our epoch - true anomaly -
changes with time depending on other parameters and it would be useful to express transit
timing and duration variations as sinosoidal frequency domain function.

TV(ω) =
∫ +∞

−∞
TV( fW(t))ejωtdt (6.1)

where TV (transit variation) can be TTV and TDV in compact form

TTV( fW) =
CT

1

CT
2 + vW⊥

cos( fW + ω̄W)

1 + eWcos( fW)
(6.2)

TDV( fW) = CD
(

lr
1 + vr⊥

− 1
)

(6.3)

Although the current models are very general, they can be be further generalized if this change
in constants is taken into account so as to be able to expand the range of applicability of our
model to any given epoch interval. It is almost certain that for the above generalization, ana-
lytical solutions can be quiet difficult to obtain and for this reason, we will need computational
analysis to play an important role alongside theoretical and mathematical analysis.

6.2 | Modelling using Convoluted Neural Networks
A completely independent and unbiased way of confirming Kipping (2008) theory would be
to train a convoluted Neural Netwrok using the latest dataset possible. There are already well
developed models for analyzing lightcurves of different TTV and TDV signals from possible
exomoon candidates. One easy model Alshehhi et al. (2020) to set up would be to consider a
binary classification where a false positive would be 0 and an exomoon candidate would mean
1. Considering a dataset going from 0<n<N. The loss function can be defined as follows,

Lerr(Φ) =
1
N

ΣN−1
0 |C(Xm; Φ)− cm| (6.4)

where each term can only take values 1 or 0. For getting the required convoluted neural net-
work (CNN) one is required to minimise this function (The number of data should be more
than the number of Φ parameters). In fitting the data points there might be noise generated
by more (unnecessary) parameters and even more the weights associated with them. In order
to smoothen out the last convoluted layer i.e., to eliminate noise one would have to take up a
convolution with a centered Gaussian Kernel G of the form,

Sm(p) = Σl
j=0Y(p− j)G(j) (6.5)
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where Y is the final layer and l denotes the last layer number.

Using these modifications one can easily define a preliminary neural network to analyse the
dataset and form one with well-defined variables and weights associated with each. Once we
have a neural network one can work with all different sorts of activation functions to check
how the fitting changes. Once we have converging results we can then do a missing variable
analysis by comparing the variables of the CNN with that of Kipping’s theory. This will help
us exactly confirm his theory and also have a well-defined code to check for exomoons.

6.3 | Wider dataset analysis
The analysis done by our code was for datasets till the year 2016. Which contained sufficient
number of observations (more than 5) for 2599 candidates. When the NASA exoplanetary
archive was examined they displayed more than 26000 candidates and therefore more obser-
vations for the TTV and TDV of these systems would help in terms of statistical analysis as by
examining a bigger dataset we can form more inferences or better might even get to see some
interesting signals.

Also from a statistical viewpoint it would help us set better shortlisting conditions and more
number of data points will also cancel out on the random TTV/TDV signal error i.e., increase
the average SNR value. Because of the low SNR in case of some candidates with transit depth
less than 85 ppm leads to false positives which can only be verified with more data points and
by eliminating this one would be working with a smaller dataset and therefore it would be
easier to do the contrast analysis for them.

6.4 | Testing exomoon hypothesis
The aforementioned theoretical and data analysis models are made from scratch, purely for
exomoon-induced TTV and TDVs. To confirm an exomoon, we collect data and try fitting it
with our theoretical model, and we do so for multiple transits as mentioned in 6.1. Considering
the assumptions made in theoretical model for TTV and TDV instantaneous equations, such as
periodic values for TTV and TDV, and so on, it is very unlikely for a system to follow the model
accurately for multiple transits. With the fitted values of MS

MP
, aS

aP
, PS

PP
and other satellite-planet

ratio parameters taken into account as well. If we obtain a fitting for the ratio parameters that
describe a satellite-planet ratio and do so consistently for multiple transits, it is likely to be an
exomoon-candidate.
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A
Derivation of generalized instantaneous

variations

Frame switch operators

A general linear translation of magnitude x0,
from α to β frame can be expressed as

xβ = xα − x0 (A.1)

A general 2-D rotational transform of magni-
tude θ, from α to β frame can be expressed as(

xβ

yβ

)
=

(
cosθ −sinθ

sinθ cosθ

)(
xα

yα

)
(A.2)

ˆ̃x1 − ˆ̃y1 to ˆ̃x− ˆ̃y frame
This is a purely rotational frame switch and
hence can be expressed in rotation matrix form.(

x̃1

ỹ1

)
=

(
cos(ω̄W) −sin(ω̄W)

sin(ω̄W) cos(ω̄W)

)(
x̃
ỹ

)
(A.3)

ˆ̃x2 − ˆ̃y2 to ˆ̃x1 − ˆ̃y1 frame
This is a purely translational frame switch and
hence can be expressed as seperate linear equa-
tions.

x̃2 = x̃1 − aWeWcos (ω̄W) (A.4)

ỹ2 = ỹ1 − aWeWsin (ω̄W) (A.5)

x̂− ŷ to x̂2 − ŷ2 frame
This is a combination of rotational and transla-
tional frame switch and hence can be expressed

as (
x
y

)
=

(
cos(−ω̄W) −sin(−ω̄W)

sin(−ω̄W) cos(−ω̄W)

)(
x0

2

y2

)
(A.6)

x2 = x0
2 − aPeP (A.7)

ˆ̃x− ˆ̃y to ˆ̃x2 − ˆ̃y2 frame
This is a combination of rotational and transla-
tional frame switch and hence can be expressed
as (

x̃
ỹ

)
=

(
cos(−ω̄W) −sin(−ω̄W)

sin(−ω̄W) cos(−ω̄W)

)(
x̃0

2

ỹ2

)
(A.8)

x̃2 = x̃0
2 − aWeW (A.9)

Barycenter terms

The distance of any point on the ellipse from the
foci is given by

r ( f ) =
a
(
1− e2)

1 + ecos ( f )
(A.10)

The above equation when applied to orbital mo-
tion of barycenter around the star, takes the fol-
lowing form

rP ( fP) =
aP
(
1− e2

P
)

1 + ePcos ( fP)
(A.11)

where rP is roughly the distance between star
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and exoplanet.

Assuming lim∆t→τ0(∆ fP) → 0, we obtain the
expression fP = π

2 − ¯omegaP, a constant as the
barycenter must roughly lie on the line joining
star and observer for an observable transit. That
gives us the constant expression for position of
barycenter during transit.

rP =
aP
(
1− e2

P
)

1 + ePsin (ω̄P)
(A.12)

As we have seen in Kipping (2008), the apparent
velocity of barycenter around the star is given
by

vB⊥ = Υ (eP , ω̄P)

√
G (MPRV + M∗)

aP
(A.13)

where

Υ (eP , ω̄P) = cos
[

arctan
(
−ePcos (ω̄P)

1 + ePsin (ω̄P)

)]
√

2 (1 + ePsin (ω̄P))(
1− e2

P
) − 1

(A.14)

Wobble terms

Equation A.10 when applied to wobble motion
of exoplanet around the planet-moon barycen-
ter, takes the following form

rW ( fW) =
aW
(
1− e2

W
)

1 + eWcos ( fW)
(A.15)

where rW is the distance between barycenter
and exoplanet. The perpendicular distance of
the exoplanet from line joining star, barycenter
and observer will be given by

x̃2 = rWcos( fW + ω̄W) (A.16)

x̃2 = aW(1− e2
W)

cos( fW + ω̄W)

1 + eWcos( fW)
(A.17)

Once again, we will consider Kipping (2008) for
the wobble velocity of the exoplanet on its wob-
ble orbit, given by

vW ( fW) = µ
1
2
W

(
2

rW ( fW)
− 1

aW

) 1
2

(A.18)

where

µW =
GM3

S

M2
PRV

(A.19)

This is not the final expression for the apparent
wobble velocity. We must now take the compo-
nent perpendicular to line joining star and ob-
server

vW⊥ ( fW) = vW ( fW) cos
[
θ̃ ( fW)

]
(A.20)

θ̃ ( fW) = arctan
(

dỹ2

dx̃2

)
(A.21)

The expression for θ̃( fW) is obtained by differ-
entiating (w.r.t. x̃2) equation of ellipse in the
x̃2 − ỹ2 frame after replacing them with x̃ − ỹ
by performing the inverse frame switch opera-
tor A.8. Doing so, we get

θ̃ ( fW) = arctan

(
ỹsin (ω̄W)−

(
1− e2

W
)

x̃cos (ω̄W)

ỹcos (ω̄W) +
(
1− e2

W

)
x̃sin (ω̄W)

)
(A.22)

Transit timing variation

Transit timing variations by definition is the
magnitude of lag or lead in the observed transit
time of the exoplanet from the calculated one.
Our reference for calculations is the barycenter
which represents the motion of exoplanet with-
out an exomoon. So it is trivial now, that the lag
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or lead in transit time will depend on the appar-
ent distance between exoplanet and barycenter,
and also will depend on the total apparent ve-
locity of the exoplanet on its orbit.

TTV( fW) = TTVO − TTVC =
x̃2

vB⊥ + vW⊥
− 0

(A.23)

TTV( fW) =
x̃2

vB⊥ + vW⊥
(A.24)

Substituting in the above equation from equa-
tions A.13, A.17 and A.20, we obtain A.35, the
expression for instantaneous TTV, as a function
of true wobble anomaly.

Writing the purely constant TTV terms as CT,
we get

TTV( fW) =
CT

1

CT
2 + vW⊥

cos( fW + ω̄W)

1 + eWcos( fW)
(A.25)

Impact parameter

The impact parameter plays a huge role in de-
termining the magnitude of the theoretical TDV
value. The larger the impact parameter, the
shorter will be the distance the exoplanet has
to travel in order to fully transit the star.

In this section we will be deriving expressions
for relative lengths and velocities, in the case
of any general impact parameter (zero or non-
zero). For this purpose, we use 3.2 as our refer-
ence. We can notice the following relations from
the diagram-

bR∗ = rPcos(i) (A.26)

where rP is position of exoplanet w.r.t. star,

given by A.12 and b is the impact parameter.

lB =
√
(R∗ + RP)2 − (bR∗)2 (A.27)

In the case of exoplanet containing exomoon,
the apparent length is altered due to perturba-
tion by an amount ∆l, given by Kipping (2009)

∆l = cos(i)rWsin( fW + ω̄W) (A.28)

We now substitute our relation A.26 in the above
formula to get

∆l =
bR∗
rP

rWsin( fW + ω̄W) (A.29)

Therefore the apparent length in presence of an
exomoon will be given by

lW =

√
(R∗ + RP)2 − (bR∗)2(1 +

1
rP

)2 (A.30)

Transit duration variation

Transit duration variations by definition is the
magnitude of lag or lead in the observed transit
duration (time taken for the exoplanet to com-
plete its transit). Our reference for calculations
is again, a barycenter which represents motion
of exoplanet without an exomoon. So it is trivial
now, that the lag or lead in transit duration will
depend upon both the length of transit distance
and on the total apparent velocity.

TDV( fW) = TDVO−TDVC =
lw

vB⊥ + vW⊥
− lb

vB⊥
(A.31)

TDV( fW) =

( lW
lb

1 + vW⊥
vB⊥

− 1

)
lB

vB⊥
(A.32)

We define the ratios as lW
lb

= lr and vW⊥
vB⊥

= vr⊥
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which denote relative apparent length and ve-
locity.

TDV( fW) =

(
lr

1 + vr
− 1
)

τ0 (A.33)

Here, τ0 represents the transit duration if the ex-
omoon were to be absent, or in other words our

reference transit duration.
Writing the purely constant TDV terms as CD,
we get

TDV( fW) = CD
(

lr
1 + vr⊥

− 1
)

(A.34)

TTV( fW) =
aW(1− e2

W)

Υ (eP , ω̄P)
√

G(MPRV+M∗)
aP

+ vW ( fW) cos
[
θ̃ ( fW)

] cos( fW + ω̄W)

1 + eWcos( fW)
(A.35)
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B
MATLAB code for plotting derived

instantaneous variations

Listing B.1: Earth-Moon System

1 % MATLAB CODE FOR PLOTTING DERIVED INSTANTANEOUS VARIATIONS

2 % EARTH -MOON SYSTEM

3
4 % PARAMETERS

5 % UNIVERSAL CONSTANT

6 G=6.67408*10^ -11;

7
8 % MASS

9 Mstar =1.989*10^30;

10 Mp =5.972*10^24 ;

11 Ms =7.34767309*10^22;

12 Mprv=Mp+Ms;

13
14 % DENSITY

15 rhostar =1.41*10^3;

16 rhop =5.51*10^3;

17 rhos =3.34*10^3;

18
19 % RADIUS

20 Rstar =696340*10^3;

21 Rp =6371*10^3;

22 Rs =1737.1*10^3;

23
24 % ORBITAL PERIOD

25 Pp =365*(86400);

26 Ps =27*(86400);

27
28 % ORBITAL ECCENTRICITY

29 ep =0.0167086;
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30 es =0.25;

31 ew=es;

32
33 % SEMI -MAJOR AXIS

34 ap =0.5*1.496*10^11;

35 as =3.84748*10^8;

36 aw=as*(Ms/Mprv);

37
38 % ORBITAL ORIENTATION

39 b=0;

40 fp=pi/2-wp;

41 wp=1.5*pi;

42 ww=0;

43 ws=-ww;

44
45 % TRANSIT TIME

46 tT =13*60*60;

47
48 % CHANGING QUANTITY

49 f=linspace (0,2*pi);

50 %t=;

51
52 % ORBITAL POSITION OF EXOPLANET

53 rw=(aw*(1-ew^2) ./(1+ew.*cos(f)));

54 rp=(ap*(1-ep^2) ./(1+ep.*cos(pi/2-wp)));

55
56 % APPARENT X-Y POSITION

57 xtil2=rw.*cos(ww+f);

58 ytil2=rw.*sin(ww+f);

59
60 % REFERENCE FRAME SHIFTS

61 xtil=-xtil2.*cos(ww)-ytil2.*sin(ww)-aw*ew;

62 ytil=xtil2.*sin(ww)-ytil2.*cos(ww);

63
64 % TANGENTIAL ANGLE

65 dytil2=ytil.*sin(ww) -(1-ew^2).*xtil.*cos(ww);

66 dxtil2=ytil.*cos(ww)+(1-ew^2).*xtil.*sin(ww);

67 thtil=atan(( dytil2)./( dxtil2));
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68
69 % APPARENT BARYCENTER VELOCITY

70 up=cos(atan((-ep*cos(wp))/(1+ep*sin(wp))))*sqrt ((2+2* ep*sin(wp))/(1-

ep^2) -1);

71 vbper=up*sqrt((G*(Mprv+Mstar))/ap);

72
73 % APPARENT WOBBLE VELOCITY

74 muw=(G*Ms^3)/(Mprv ^2);

75 vw=(muw ^(1/2)).*((2./ rw) -(1/aw)).^(1/2);

76 vwper=vw.*cos(thtil);

77
78 % TTV EXPRESSION

79 ttv=xtil2 ./( vbper+vwper);

80
81 % TDV EXPRESSIONS

82 q=b*Rstar;

83 dq=rw.*sin(ww+f).*((b*Rstar)/(rp));

84
85 % KIPPING (2009) 'S TDV

86 eb=sqrt ((( Rstar+Rp)^2-(q+dq).^2) ./(( Rstar+Rp)^2-q^2));

87 tdvk =((eb.*vbper)./( vbper+vwper) -1).*tT;

88
89 % MODIFIED TDV

90 lr=sqrt ((( Rstar+Rp)^2-(q+dq).^2) ./(( Rstar+Rp)^2-q^2));

91 t0=(sqrt((Rstar+Rp)^2-(b*Rstar)^2))./( vbper);

92 tdv=((lr.*vbper)./( vbper+vwper) -1).*t0;

93
94 % TDV DIVERGENCE FROM KIPPING 'S MODEL

95 plot(f,tdv ,f,-tdv ,f,tdvk ,f,-tdvk ,'linewidth ' ,1.7);

96 xlim ([0 2*pi])

97
98 % TDV PLOT

99 plot(f,tdv ,f,-tdv ,'linewidth ' ,1.7);

100 title('Transit Duration Variation ')

101 xlabel('f')

102 ylabel('TDV')

103 xlim ([0 2*pi])

104 grid on
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105
106 % TTV PLOT

107 plot(f,ttv ,'linewidth ' ,1.7)

108 title('Transit Timing Variation ')

109 xlabel('f')

110 ylabel('TTV')

111 xlim ([0 2*pi])

112 grid on

113
114 % TTV -TDV MAGNITUDE COMPARISON

115 TTV and TDV

116 plot(f,ttv ,f,tdv ,f,-tdv ,'linewidth ' ,1.7)

117 title('Transit Variation ')

118 xlabel('f')

119 ylabel('TTV vs TDV')

120 xlim ([0 2*pi])

121 grid on

122
123 % TTV -TDV PHASE DIAGRAM (IN MINUTES)

124 plot(ttv/60,tdv/60,ttv/60,-tdv/60,'linewidth ' ,1.7)

125 title('TDV vs TTV')

126 xlabel('TTV')

127 ylabel('TDV')

128 grid on
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C
Python Code for Data Analysis

# −*− c o d i n g : u t f −8 −*−
"""
C r e a t e d on Thu Sep 24 0 9 : 2 5 : 1 5 2020

@author : b i n a y
"""
import numpy as np
import pandas as pd
import shlex
from sc ipy . optimize import c u r v e _ f i t
import m a t p l o t l i b . pyplot as p l t

a r r = [ ]
Tnum = [ ]
KTTV = [ ]
i = 0

def f ( x ,A, B ,C ) :
#M = max (KTTV[ i ] )
# ( ( (M−a b s (A) ) * np . s i n ( ( ( np . a b s ( B ) + 9 0 ) * x )+C ) ) )
return ( (A*np . s i n ( ( B* x )+C ) ) )

def f2 ( x ,A,C ) :
params , coparam = c u r v e _ f i t ( f , Tnum[ i ] , KTTV[ i ] , maxfev =5000)
B = params [ 1 ]
return ( (A*np . s i n ( ( B* x )+C ) ) )

def f ind ( e l e ) :
for i in range ( len ( a r r ) ) :

i f ( e l e ==a r r [ i ] ) :
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return Fa lse
return True

def CheckString ( var ) :
array = l i s t ( var )
sum1 = " "
for i in range ( len ( array ) ) :

i f ( array [ i ]== ' * ' ) :
continue

else :
sum1 += array [ i ]

return ( f l o a t ( sum1 ) )
temp2 = np . array ( pd . read_csv ( "C:/ Users/binay/Downloads/kepler_O −C. t x t " ,\
skiprows =27) )

# d e c l a r i n g v a r i a b l e
KOI3 = [ ]
KOII = [ ]
KTTV_s = [ ]
KTDV_s = [ ]
KTTV_err = [ ]
KTDV_err = [ ]
KTTV_err_s = [ ]
KTDV_err_s = [ ]
Tnumt = [ ]
# s t o r i n g t h e t e x t f i l e in an a r r a y f o r m a t
for i in range ( len ( temp2 ) ) :

KOI3 . append ( np . array ( shlex . s p l i t ( temp2 [ i ] [ 0 ] ) ) )
temp = 1 . 0 1
i = 0
z = 0
KTDV = [ ]
TDV = [ ]
TDV_s = [ ]
print ( len ( KOI3 ) )
while ( i <len ( KOI3 ) ) :

a = f l o a t ( KOI3 [ i ] [ 0 ] )
TTV = [ ]
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TTV_s = [ ]
TDV = [ ]
TDV_s = [ ]
TTV_err = [ ]
TDV_err = [ ]
TTV_err_s = [ ]
TDV_err_s = [ ]
Tnumt = [ ]
# p r i n t ( i )
h = 0
# S t o r i n g TTV and t r a n s i t number d a t a in t h e a r r a y s
while ( a==temp ) and ( h < 1 1 ) :

i f ( ( KOI3 [ i ] [ 3 ] ! = "NaN" ) and ( KOI3 [ i ] [ 5 ] ! = "Nan" ) ) and\
( ( KOI3 [ i ] [ 1 1 ] ! = "NaN" ) and ( KOI3 [ i ] [ 1 3 ] ! = "Nan" ) ) :

i f ( ( KOI3 [ i ] [ 4 ] ! = "NaN" ) and ( KOI3 [ i ] [ 6 ] ! = "Nan" ) ) and\
( ( KOI3 [ i ] [ 1 2 ] ! = "NaN" ) and ( KOI3 [ i ] [ 1 4 ] ! = "Nan" ) ) :

TTV . append ( f l o a t ( KOI3 [ i ] [ 3 ] ) ) #TTV
Tnumt . append ( i n t ( KOI3 [ i ] [ 1 ] ) ) #no . o f t r a n s i t
TDV. append ( f l o a t ( KOI3 [ i ] [ 5 ] ) )
TTV_s . append ( f l o a t ( KOI3 [ i ] [ 1 1 ] ) ) #TTV
TDV_s . append ( f l o a t ( KOI3 [ i ] [ 1 3 ] ) )
TTV_err . append ( CheckString ( KOI3 [ i ] [ 4 ] ) ) #TTV
TDV_err . append ( CheckString ( KOI3 [ i ] [ 6 ] ) )
TTV_err_s . append ( CheckString ( KOI3 [ i ] [ 1 2 ] ) ) #TTV
TDV_err_s . append ( CheckString ( KOI3 [ i ] [ 1 4 ] ) )
h += 1

i f ( i <len ( KOI3 ) − 1 ) :
i += 1# t o move on t o t h e nex t row
temp = f l o a t ( KOI3 [ i ] [ 0 ] ) #KOI

i f ( i >=len ( KOI3 ) − 1 ) :
break

i f ( i ==len ( KOI3 ) − 1 ) :
break

# s t o r i n g a l l t h e TTV and T r a n s i t number d a t a in a b i g g e r
# a r r a y in t h e form o f a DDA
i f ( len (TTV) >10)and ( len ( Tnumt ) > 1 0 ) :

KOII . append ( a )
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KTTV. append ( np . array (TTV ) )
KTDV. append ( np . array (TDV) )
Tnum. append ( np . array ( Tnumt ) )
KTTV_s . append ( np . array ( TTV_s ) )
KTDV_s . append ( np . array ( TDV_s ) )
KTTV_err . append ( np . array ( TTV_err ) )
KTDV_err . append ( np . array ( TDV_err ) )
KTTV_err_s . append ( np . array ( TTV_err_s ) )
KTDV_err_s . append ( np . array ( TDV_err_s ) )
while ( a==temp ) and ( i <len ( KOI3 ) − 1 ) :

i += 1
temp = f l o a t ( KOI3 [ i ] [ 0 ] )

z = 0
c = [ ]

f i t = [ ]
params , coparam = [ ] , [ ]
params1 , coparam1 = [ ] , [ ]
count = 0
phase = 0 . 0
Phi = [ ]
count1 = 0
for i in range ( len (KTTV ) ) :

i f ( f ind ( KOII [ i ] ) ) :
# p r i n t ( KOII [ i ] )
params , coparam = c u r v e _ f i t ( f , Tnum[ i ] , KTTV[ i ] , maxfev =5000)
params1 , coparam1 = c u r v e _ f i t ( f , Tnum[ i ] , KTDV[ i ] , maxfev =5000)
phase = params [2] − params1 [ 2 ]
while ( phase < −2.0*np . pi ) or ( phase > 2 . 0 * np . pi ) :

i f ( phase < −2.0*np . pi ) :
phase +=2.0*np . pi

e l i f ( phase > 2 . 0 * np . pi ) :
phase −=2.0*np . pi

# p r i n t ( p h a s e )
# p l o t t i n g
count+=1
# i f ( params [ 0 ] * 1 . 4 1 4 2 < 5 0 0 0 . 0 ) :
i f ( abs ( abs ( phase ) − abs ( np . pi / 2 . 0 ) ) < 0 . 5 ) :

count1+=1
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print ( KOII [ i ] , phase )
# p l t . c l f ( )
# p l t . t i t l e (" KOI "+ s t r ( KOII [ i ] ) + " Phase D i f f "+ s t r ( p h a s e ) )
# p l t . y l a b e l ("TTV ( in min ) " )
# p l t . x l a b e l (" T r a n s i t Number " )
# p l t . e r r o r b a r (Tnum[ i ] ,KTTV[ i ] , y e r r = KTTV_err [ i ] , fmt ='−o ' ,\
l a b e l = " Observed TTV" )
# p l t . e r r o r b a r (Tnum[ i ] ,KTDV[ i ] , y e r r = KTDV_err [ i ] , fmt ='−o ' ,\
l a b e l = " Observed TDV" )
#X = np . l i n s p a c e (Tnum[ i ] [ 0 ] , Tnum[ i ] [ 1 0 ] , 1 0 0 0 )
# p l t . p l o t (X, params [ 0 ] * np . s i n ( ( params [ 1 ] *X) + params [ 2 ] ) , \
l a b e l = " F i t t e d TTV" )
# p l t . p l o t (X, params1 [ 0 ] * np . s i n ( ( params1 [ 1 ] *X) + params1 [ 2 ] ) , \
l a b e l = " F i t t e d TDV" )
# p l t . l e g e n d ( )
# p l t . s a v e f i g (" D i f f KOI "+ s t r ( KOII [ i ] ) + " TTV . png ")
' ' '
f o r j in range ( l e n (X ) ) :

p h a s e = ( (X[ j ] * params [ 1 ] ) +\
params [ 2 ] ) − ( (X[ j ] * params1 [ 1 ] ) + params1 [ 2 ] )
w h i l e ( phase < −2.0* np . p i ) o r ( phase > 2 .0 * np . p i ) :

i f ( phase < −2.0* np . p i ) :
p h a s e +=2.0* np . p i

e l i f ( phase >2 . 0 * np . p i ) :
phase −=2.0* np . p i

Phi . append ( p h a s e )
' ' '
# p l t . t i t l e (" KOI "+ s t r ( KOII [ i ] ) + " E v o l u t i o n o f Phase D i f f e r e n c e " )
# p l t . y l a b e l (" Phase D i f f e r e n c e " )
# p l t . x l a b e l (" T r a n s i t Number " )
# p l t . p l o t (X, Phi , ' . ' )
# p l t . s a v e f i g (" Phase_KOI "+ s t r ( KOII [ i ] ) + " TTV . png ")
# Phi = [ ]
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